GeoKernels: modeling of spatial data on geomanifolds
نویسندگان
چکیده
This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.
منابع مشابه
Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data
‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...
متن کاملSpatial Modeling of Censored Survival Data
An important issue in survival data analysis is the identification of risk factors. Some of these factors are identifiable and explainable by presence of some covariates in the Cox proportional hazard model, while the others are unidentifiable or even immeasurable. Spatial correlation of censored survival data is one of these sources that are rarely considered in the literatures. In this paper,...
متن کاملDetermination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City
Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...
متن کاملModeling inequality levels with the help of spatial and non-spatial indices in northern Khorasan
This paper aims to explain the inequality and imbalance in the developmental levels of 6 selected cities in North Khorasan. The paper seeks to answer these two questions as to whether the spatial and non-spatial indices in regional disparities have an effect on equality? And can we achieve a functional model based on the evaluation of indicators? In order to achieve the goal and the answer to t...
متن کاملTotal Electricity Demand Modeling: An Application of Spatial Panel Econometric Method
This paper aims to model total electricity demand (incremental) in order to estimate price and income elasticities using provincial data and the spatial panel data method. Electricity demand at the province level is influenced by climatic zones, which can be divided into temperate, cold and sub-tropical. This paper uses time series data for electricity demand in Iran’s 28 provinces, taking into...
متن کامل